BouwTechnologie RDA BV Gageldijk 192^c 3566 MJ Utrecht tel: 030-26 17 963 fax: 030-26 17 693 Rabobank: 394570103 BTW nr.: NL 8077 72 434 B.01 HR Utrecht 30151213 # REPORT 3244-2: SHEAR STRENGTH AND SHEAR MODULUS OF MAGOXX®-BOARD Project number: 3244 Author: drs. H. Schinkel Date: August 24, 2020 Number of pages: 6 ## CONTENTS page | 1. | Р | PROJECT DATA | 1 | |----|-----|--------------------------|---| | 2. | INT | RODUCTION | 2 | | 3. | DES | SCRIPTION | 3 | | - | 3.1 | METHOD | 3 | | 3 | 3.2 | CALCULATIONS | 4 | | 3 | | APPARATUS USED | | | 3 | | TIME FRAME OF TESTS | | | 3 | 3.5 | DEVIATIONS FROM STANDARD | 5 | | 4 | RES | SUI TS | 5 | ## 1. PROJECT DATA Commissioner : SINH Building Solutions B.V. Address : Saturnusstraat 60, unit 67 NL - 2216 AH Den Haag Contact person : Mr. J. Engels Project : Shear strength and shear modulus of Magoxx®-Board Project number : 3244-2 Project manager : drs. H. Schinkel Date of examination: July - August 2020 Date of report : August 24, 2020 #### 2. INTRODUCTION BouwTechnologie RDA was commissioned by SINH Building Solutions BV to test Magoxx®-board as commercialized by SINH Building Solutions at Den Haag (NL). The shear properties shall be determined in accordance with EN 789 on five specimens, cut with it longest size parallel to the longest dimension of the board and five specimens, perpendicular to the longest dimension of the board. The 29th of May 2020 SINH Building Solutions B.V. supplied five boards with a thickness of 9 mm. The width of all boards was 1200 mm and the length of the boards was 3000 mm. The sheets were marked on their surface: MAGOXX-CE-ETA 15/0634 NLY01-9mm-09/03/20 BouwTechnologie cut the test pieces for the different tests in accordance to EN 326 and EN 12467, dimensions 900 x 450 mm. #### 3. DESCRIPTION According to the cutting plan the samples were sawn by BouwTechnologie RDA BV. The samples were coded as follows: Sheet number (1 trough 5) Direction of cutting (P =parallel, L=perpendicular) Sh (stands for shear) #### 3.1 Method The tests were carried out in accordance with EN 789. The deformation over 120 mm was measured using two Linear Variable Differential Transformers (LVDT's), mounted to two sides of the specimens. The characteristical value of the shear modulus $(G_{v,mean})$ was determined from the force and the dimension of the section. The maximum force (F_{max}) and the dimensions were used for calculating the characteristical value of the shear strength $(f_{v,k})$. In order to ensure a correct propagation of the force into the specimen both ends were packed between two pieces of wood, 35 mm thick fir. Figure 1 shows the test set-up. The deformation velocity was kept constant at 5 mm/min, at this loading rate the specimens yielded in $300 \text{ s} \pm 120 \text{ s}$. Figure 1. Dimensions and arrangement of the specimens and sensors ## 3.2 Calculations Shear strength f_v was calculated using the formula: $$f_v = F_{max}$$ A where: f_V shear strength [N/mm²] F_{max} maximum load at yield [N] A surface of the section (height x thickness) [mm²] Shear modulus G_{ν} was calculated between 0,1 F_{max} and 0,4 F_{max} using: $$Gv = \frac{0.5 \cdot l1 \cdot (f40 - f10)}{A \cdot (u40 - u10)}$$ where: | G_{v} | shear modulus | $[N/mm^2]$ | |----------------------------------|--|------------| | I ₁ | distance between the measuring points (120 mm) | [mm] | | Α | surface of the section (height x thickness) | [mm²] | | F ₄₀ -F ₁₀ | increment of force between 10% and 40% of yield load | [N] | | u_{40} - u_{10} | increment of deformation 10% and 40% of yield load | [mm] | The characteristic values are calculated according with EN 14358, under the assumption that the test values have a log normal spread. ## 3.3 Apparatus used Universal test bank Schenk (calibrated) Digital (calibrated) ## 3.4 Time frame of tests The tests were done July 24, 2020 #### 3.5 Deviations from standard The surface of the fixings of the LVDT's was superior to 5 mm². ## 4. RESULTS The individual test results of the different tests are given in table 2. The average values are the arithmetic means by calculation. The results didn't show a difference in the two directions of cutting. Table 1 summarizes therefor all results without the distinction of direction. Table 1. Characteristic values of shear strength and shear modulus | MAGOXX [®] -board | Shear strength | Shear modulus | | | | | |--------------------------------|---------------------|----------------------|--|--|--|--| | 9 mm | (f _{v,k}) | (G _{mean}) | | | | | | | [N/mm²] | [N/mm²] | | | | | | Independent of board direction | 5,61 | 2497 | | | | | Table 2. Individual results. | Sample | t _{up} | t _{down} | t _{mean} | F _{max} | f _v | In mi | (In mi-y) ² | F ₁₀ | F ₄₀ | U10 | U40 | G _v | |---------|-----------------|-------------------|-------------------|------------------|----------------------|----------------------|------------------------|-----------------|-----------------|-------|-------|----------------------| | | [mm] | [mm] | [mm] | [kN] | [N/mm ²] | [N/mm ²] | [N/mm ²] | [kN] |]kN] | [mm] | [mm] | [N/mm ²] | | 1LSh | 9,56 | 9,38 | 9,47 | 30,37 | 5,88 | 1,77 | 0,0060 | 3,02 | 12,10 | 0,013 | 0,055 | 2511 | | 1PSh | 9,08 | 9,28 | 9,18 | 33,14 | 6,62 | 1,89 | 0,0017 | 3,29 | 13,21 | 0,009 | 0,055 | 2559 | | 2LSh | 9,58 | 9,58 | 9,58 | 33,56 | 6,43 | 1,86 | 0,0001 | 3,34 | 13,32 | 0,016 | 0,059 | 2657 | | 2PSh | 9,67 | 9,50 | 9,59 | 35,37 | 6,77 | 1,91 | 0,0040 | 3,51 | 14,07 | 0,012 | 0,056 | 2742 | | 3LSh | 9,37 | 9,28 | 9,33 | 34,63 | 6,81 | 1,92 | 0,0048 | 3,42 | 13,84 | 0,012 | 0,057 | 2751 | | 3PSh | 9,30 | 9,25 | 9,28 | 34,51 | 6,83 | 1,92 | 0,0051 | 3,41 | 13,70 | 0,014 | 0,060 | 2666 | | 4LSh | 9,54 | 9,50 | 9,52 | 30,18 | 5,82 | 1,76 | 0,0079 | 2,96 | 11,97 | 0,010 | 0,060 | 2057 | | 4PSh | 9,65 | 9,67 | 9,66 | 32,34 | 6,14 | 1,82 | 0,0012 | 3,20 | 12,92 | 0,014 | 0,060 | 2401 | | 5LSh | 9,54 | 9,38 | 9,46 | 32,06 | 6,22 | 1,83 | 0,0005 | 3,13 | 12,72 | 0,012 | 0,061 | 2267 | | 5PSh | 9,55 | 9,54 | 9,55 | 31,99 | 6,15 | 1,82 | 0,0011 | 3,18 | 12,68 | 0,019 | 0,065 | 2361 | | Average | | | 9,46 | 32,82 | 6,37 | | | | | | | 2497 | | St.Dev | | | 0,15 | 1,76 | 0.38 | | | | | | | 225 | | VC (%) | | | 2 | 5 | 6 | | | | | | | 9 | Characteristic values EN 14358:2016 $\begin{array}{cccc} \text{Criatatelistic values EN 14358.2016} \\ \text{y} & \text{mean} & 1,85 \\ \text{s}_{y} & \text{st,dev} & 0,060 \\ \text{n} & 10 \\ \text{k}_{s}\left(\text{n}\right) & 2,10 \\ \end{array}$ $f_{v,k}$ [N/mm²] 5,61 $G_{v,mean}$ [N/mm²] 2497